Improving anthropometric datasets: comparison of machine learning and statistical approaches to fill data gaps

The article "Improving anthropometric datasets: comparison of machine learning and statistical approaches to fill data gaps" is a chapter of the conference proceedings "Advances in Digital Human Modeling II. Proceedings of the 9th International Digital Human Modeling Symposium, DHM 2025" and can be downloaded on the publisher's website. (charges may apply)

Bibliographic information

Title:  Improving anthropometric datasets: comparison of machine learning and statistical approaches to fill data gaps. 

Written by:  A. Ackermann, Wischniewski

in: Advances in Digital Human Modeling II. Proceedings of the 9th International Digital Human Modeling Symposium, DHM 2025 / R. Marshall, S. Summerskill, G. Harih, S. Scataglini (Eds.) Cham:  Springer, 2025.  pages: 93-107, Project number: F 2446, DOI: 10.1007/978-3-032-00839-8_10

Further Information

Research Project

Project numberF 2446 StatusCompleted Project Digital Ergonomics - Developing a method for analysis, visualization and long-term usage of complex anthropometric data for product and work-system design

To the Project

Research completed